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Abstract

This study introduces a novel scheme for the discrete high-frequency forced vibration analysis based on discrete singular

convolution (DSC) and mode superposition (MS) approaches. The accuracy of the DSC–MS is validated for thin beams

and plates by comparing with available analytical solutions. The performance of the DSC–MS is evaluated by predicting

spatial distribution and discrete frequency spectra of the vibration response of thin plates with two different boundary

conditions. The frequency spectra of the time-harmonic excitation forces are in the form of ideal and band-limited white

noise so that the natural modes in the frequency band are provoked. The solution exposes high-frequency response

behaviour definitely. Therefore, it is hoped with this paper to contribute the studies on the treatment of uncertainties in the

high-frequency design applications.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the science of vibro-acoustics, vibration and acoustic problems are classified according to their frequency
range as, low-, medium- and high-frequency problems. Since dynamic behaviour of systems changes with
regard to the excitation frequency, adaptive approaches are required for reliable solutions. In practice, it is not
mentioned about definite boundaries separating frequency ranges from each other due to the fact that they
may change from system to system. However, Rabbiolo et al. [1] have put forward an indicator for
approximately defining high-frequency thresholds based on ‘‘modal overlap count (modal overlap factor)’’ of
simple structures such as beams, plates and acoustical spaces. It is known that modelling high-frequency
dynamic systems using deterministic techniques such as finite element method (FEM) and boundary element
method (BEM) is numerically expensive. Besides, since the vibro-acoustic response is very sensitive to the
changes in system parameters at higher frequencies, some uncertainties are encountered. Therefore,
deterministic techniques are feasible only for low-frequency analysis. Albeit hierarchical FEM (p-FEM) has
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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extended the frequency limit of classical FEM and this approach is generally regarded as mid-frequency
technique.

The statistical energy analysis (SEA) developed by Lyon and Maidanik in 1962 has proved its validity for
high-frequency analysis [2]. However, SEA is based on some pre-assumptions restricting its efficiency and
capacity. Therefore, several alternative energy-based techniques have been developed [3–11]. Among them,
energy flow analysis (EFA) and its finite element application, energy finite element method (EFEM) are
common approaches in service [3–6]. However, since all these methods consider average prediction of energy
as system variable to describe the response level, they disregard modal information and thus, loose discrete
frequency response behaviour of the structure. Specifically, as far as the present authors are aware, any high-
frequency method is not present in order to predict frequency response discretely without missing modal
information and so being a key for high-frequency uncertainties. Furthermore, there is not any unique method
valid for all frequency ranges to perform response analysis.

In the last decade, a novel approach called discrete singular convolution (DSC) has been introduced by Wei
[12–15]. This is a powerful method for the numerical solution of differential equations. The solution technique
of the DSC is based on the theory of distribution and wavelets. This approach has been successfully used in
various free vibration analyses of isotropic thin simple structures with several boundary conditions [16–24].
Hou et al. [25] have used DSC–Ritz method for the free vibration analysis of thick plates. Civalek [26–28] has
applied the DSC to the free vibration and buckling analyses of different laminated shells and plates. Sec-gin
et al. [29] have used the DSC for the free vibration of fiber–metal laminated composite plates. Sec-gin and
Sarıgül [30] have presented open algorithm of the DSC and have shown the superiority of the DSC over several
numerical techniques for the free vibration analysis of symmetrically laminated composite plates. Moreover, for
high-frequency free vibration analysis, Wei et al. [31] and Zhao et al. [32] have obtained ten thousands of
vibration modes for thin beams and plates. Lim et al. [33] have used DSC–Ritz approach for high-frequency
modal analysis of thick shells. Ng et al. [34] have pointed out that the DSC yields more accurate prediction
compared to differential quadrature method for the plates vibrating at high frequencies. These successes of the
DSC promise that this method would be reliably used for discrete high-frequency response analysis without
handling averaged energetic parameters unlike the available high-frequency approaches.

In this regard, the present paper introduces a novel scheme for the discrete high-frequency forced vibration
analysis by employing discrete singular convolution (DSC) and mode superposition (MS) approaches.
Although at high frequencies thin-structure theories may be hardly satisfied, in order to avoid the additional
complexity caused by thick-structure theories, simple physical models were used for the introduction of the
present scheme as done in Refs. [31,32]. The validation of the scheme is realized by the comparisons with the
analytical solutions of spatially distributed response of beams and frequency response of infinite plates.
Besides, performance and restrictions of DSC–MS approach are discussed by the demonstrations of spatial
distribution and frequency spectra of the vibration response for a wide frequency range. The frequency spectra
of the time-harmonic point-excitation forces are in the form of ideal and band-limited white noise, so that the
natural modes in the considered frequency region are excited. These discrete modes appearing in the response
spectra are pleasant signals of recovering the uncertainties of high-frequency applications.

2. Discrete singular convolution (DSC)

Singular convolution is defined by the theory of distributions. Let T be a distribution and Z(t) be an element
of the space of test functions. Then, a singular convolution can be given by [12]

F ðtÞ ¼ ðTnZÞðtÞ ¼
Z 1
�1

Tðt� xÞZðxÞdx (1)

Here, the sign � is the convolution operator, F(t) is the convolution of Z and T, T(t�x) is the singular kernel
of the convolution integral. Depending on the form of the kernel T, singular convolution can be applied to
different science and engineering problems. Delta kernel is an interpolation function essential for the
numerical solution of partial differential equations:

TðxÞ ¼ dn
ðxÞ n ¼ 0; 1; 2; . . . (2)
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Delta kernels given in Eq. (2) are proper for use in vibration analysis. However, these kernels are singular;
thus, they can not be digitized directly in computer. In order to avoid this problem, sequences of
approximations Ta of the distributions T can be constructed such that Ta converge to T:

lim
a!a0

TaðxÞ ! TðxÞ (3)

where a0 is a generalized limit. With a good approximation, a DSC can be determined as

F aðxÞ ¼
X

k

Taðx� xkÞf ðxkÞ (4)

Here, Fa(x) is an approximation to F(x) and {xk} is an approximate set of discrete points on which the DSC
in Eq. (4) is well defined. f(x) is used here as the test function replacing the original test function Z(x).
A sequence of approximation can be improved by a regularizer in order to increase the regularity of
convolution kernels. Gaussian regularizer is a typical delta regularizer and it is in the form of

RsðxÞ ¼ e�x2=2s2 (5)

where s is the standard deviation. Delta kernel with sampling parameter a approximately in the form

Ta ¼
sin ax

px
(6)

is known as Shannon father wavelet (scaling function). In vibration analysis, a discretized form of Eq. (6),
which is sampled by Nyquist frequency (a ¼ p/D, D is the grid spacing) and improved by Gaussian regularizer,
can be chosen as the kernel function of the DSC [12]

dp=D;sðx� xkÞ ¼
sin½p=Dðx� xkÞ�

p=Dðx� xkÞ
expð�ðx� xkÞ

2=2s2Þ (7)

Here, D is determined by considering required precision of the analysis. The DSC expression in Eq. (4) can
be rewritten by using regularized Shannon delta kernel (RSDK) given in Eq. (7):

f ðxÞ �
X1

k¼�1

sin½p=Dðx� xkÞ�

p=Dðx� xkÞ
expð�ðx� xkÞ

2=2s2Þf ðxkÞ (8)

As seen in Eq. (8), since DSC approach is defined in an infinite region, the kernels must be bounded in a
sufficient computational domain for numerical determination. This can be practically achieved by a spatial
truncation of the convolution kernel. A translationally invariant symmetric truncation algorithm can be used
in an efficient bandwidth (2M+1) as follows:

f ðnÞðxmÞ �
XM

k¼�M

dðnÞp=D;sðxm � xkÞf ðxkÞ (9)

Here, xm is the specific central point considered and dðnÞp=D;sðxÞ is the nth derivative of d(x) given in Eq. (7)
with respect to x.

3. DSC–MS scheme

3.1. MS technique for plates

MS technique assumes a solution that all system modes discretely contribute to local displacement response.
The mathematical foundation of the MS is based on the separation of variables. Bending displacement
response of a plate w(x,y,t) can be expressed by the infinite summation of the product of two variables;
fp(x,y), the pth natural mode shape of the plate and wp(t), the magnitude of the pth mode [35]:

wðx; y; tÞ ¼
X1
p¼1

wpðtÞfpðx; yÞ (10)
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Eq. (10) can be approximately written in terms of sufficient number of modes P contributing the response:

wðx; y; tÞ �
XP

p¼1

wpðtÞfpðx; yÞ (11)

The equation of bending motion of a thin plate with internal loss factor zo1 is given in terms of the
displacement w:

D2ð1þ jzÞr4wðx; y; tÞ þ €wðx; y; tÞ ¼
1

rh
f ðx; y; tÞ (12)

where D2
¼ D0/rh (D0 ¼ Eh3/12(1�u2)is the plate rigidity, E: modulus of elasticity, h: plate thickness, u:

Poisson’s ratio), r is mass density, j ¼
ffiffiffiffiffiffiffi
�1
p

and r4 ¼ (q4/qx4+2q4/qx2qy2+q4/qy4). By applying Eq. (11) to
the homogenous part of Eq. (12) yields

D2ð1þ z2Þ
XP

p¼1

r4fpðx; yÞwpðtÞ þ ð1� jzÞ
XP

p¼1

fpðx; yÞ €wpðtÞ ¼ 0 (13)

Eq. (13) leads to the following equations:

D2ð1þ z2Þ
XP

p¼1

r4fpðx; yÞ
1

fpðx; yÞ
¼ �ð1� jzÞ

XP

p¼1

€wpðtÞ
1

wpðtÞ
¼
XP

p¼1

kp (14)

D2ð1þ z2Þ
XP

p¼1

r4fpðx; yÞ �
XP

p¼1

kpfpðx; yÞ ¼ 0 (15)

ð1� jzÞ
XP

p¼1

€wpðtÞ þ
XP

p¼1

kpwpðtÞ ¼ 0 (16)

Here kp is always a positive number which represents the square of the natural frequency of the pth
mode, op.

For multi-excitations, point force f ðx; y; tÞ ¼
PN

i¼1

PN
j¼1f i;jðtÞdðx� xiÞdðy� yjÞ (d is the Dirac-delta

function) can be identified as

f ðx; y; tÞ ¼
XP

p¼1

XN

i¼1

XN

j¼1

f i;jðtÞfpðxi; yjÞ

 !
(17)

3.2. DSC discretization

It is useful to define the following indices in the determination of the entire DSC domain for r direction of
differentiation (r ¼ x or y for plates):

k ¼ �M ; . . . ; 0; . . . ;M; ir ¼ 0; 1; 2; . . . ;Nr � 1; jr ¼ �M ; . . . ; 0; . . . ;Nr � 1þM (18)

where Nr represents the number of structure points whereas M denotes the number of auxiliary points with the
condition that NrXM+1. Structure and auxiliary points are positioned by the same uniform interval Dr.
Consequently, DSC expression given in Eq. (9) is rewritten in the discretized domain as

F ðnÞðrir
Þ �

XM
k¼�M

dðnÞp=D;sðkDrÞF ðrirþkÞ (19)

where kDr ¼ ðr0 � rkÞ ¼ ðr1 � rkÞ ¼ � � � ¼ ðrNr�1 � rkÞ.
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3.3. DSC– MS implementation

Defining a full mode shape function Ff ¼
PP

p¼1fp and applying DSC expression in Eqs. (19)–(15) by

introducing the non-dimensional parameters; X ¼ x/a, Y ¼ y/b, F ¼ Ffa, l ¼ a/b, O ¼ oa2=D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
yields:

XM
k¼�M

dð4Þp=Dx;s
ðkDxÞFðX ixþk;Y Þ

þ 2l2
XM

k¼�M

dð2Þp=Dx;s
ðkDxÞFðX ixþk;Y Þ

XM
k¼�M

dð2Þp=Dy;s
ðkDyÞFðX ;Y iyþkÞ

þ l4
XM

k¼�M

dð4Þp=Dy;s
ðkDyÞFðX ;Y iyþkÞ ¼ X2FðX ;Y Þ (20)

Here, X is the diagonal natural frequency parameter matrix. The mode shape vector of the plate is
formed as

U ¼ fF0;0; . . . ;F0;Ny�1;F1;0; . . . ;F1;Ny�1; . . . ; . . . ;FNx�1;0; . . . ;FNx�1;Ny�1g
T (21)

This discretization is illustrated in Fig. 1. DSC kernels in Eq. (20) can be written in a DSC matrix form as

CðnÞr ir; jr ¼
dðnÞp=Dr;s

ððjr � irÞDrÞ; if �Mpjr � irpM

0; otherwise

(
(22)

The numerical scheme of the DSC–MS is completed by implementing the boundary conditions to Eq. (20).
For simply supported and clamped boundary conditions, an assumption on the relation between auxiliary
points and structure points can be made by determining an arbitrary index S ¼ 1,y,M and the coefficients
Ar,s and Br,s:

For left (r ¼ X) and top (r ¼ Y) boundaries

Fðr�sÞ � Fðr0Þ ¼ Ar;s½FðrsÞ � Fðr0Þ� (23)

In a similar way, for right (r ¼ X) and bottom (r ¼ Y) boundaries

FðrNr�1þsÞ � FðrNr�1Þ ¼ Br;s½FðrNr�1�sÞ � FðrNr�1Þ� (24)
Fig. 1. DSC grid representation for plates.



ARTICLE IN PRESS
A. Sec-gin, A. Saide Sarıgül / Journal of Sound and Vibration 320 (2009) 1004–1022 1009
Any auxiliary point can be written in terms of structure points by using one of the relations in Eqs. (23) and
(24). Then by using the DSC expression in Eq. (19), one can obtain the coefficients as Ar,s ¼ Br,s ¼ �1 for
SSSS and Ar,s ¼ Br,s ¼ 1 for CCCC plates, for each s value. For these plates, after implementation of the
displacement boundary condition F(r0) ¼ F(rN�1) ¼ 0, Eq. (20) can be reconstructed by DSC matrices as an
eigenvalue equation:

ðT�X2
ÞF ¼ 0 (25)

Here T matrix can be expressed as

T ¼ ðCð4Þx � IyÞ þ 2l2ðCð2Þx � Cð2Þy Þ þ l4ðIx � Cð4Þy Þ

n o
(26)

where Cr
(n) is the DSC characteristic matrix, Ir is the identity matrix, and the symbol � denotes tensorial

product. For square plates l ¼ 1; Ix ¼ Iy. A characteristic matrix is obtained by applying specific boundary
conditions to the DSC matrix Wr

(n)
N� (2M+N) defined in Eq. (22). From Eq. (25), one can obtain natural

frequencies (o1, o2,y,oP) and the corresponding mode shapes (f1, f2,y,fP).
Eq. (16) can be reconstructed by the force term:

ð1� jzÞ
XP

p¼1

ð €wpðtÞ þ o2
pwpðtÞÞ ¼

1

rh

XP

p¼1

XN

i¼1

XN

j¼1

f i;jðtÞfpðxi; yjÞ

 !
(27)

Assuming a harmonic response in the form of wp(t) ¼Wpe
iot, the steady-state frequency response can be

obtained as follows:

W pðoÞ ¼
1

rh

XP

p¼1

1

o2
p � ð1� jzÞo2

XN

i¼1

XN

j¼1

Fi;jðoÞfpðxi; yjÞ

 !
(28)

where Fi,j(o) is the Fourier transform of fi,j(t). Substituting Eq. (28) into Fourier transform of Eq. (11), one
can obtain a space-frequency dependent response equation for thin plates as follows:

W ðx; y;oÞ ¼
1

rh

XP

p¼1

fpðx; yÞ

o2
p � ð1� jzÞo2

XN

i¼1

XN

j¼1

F i;jðoÞfpðxi; yjÞ

 !
(29)

4. Numerical study

This section has been organized as four main parts. The first part is concerned with the high-frequency
concept. The second part includes a convergence study for the DSC predictions of thin beams and plates. The
third part presents verification study of DSC–MS approach by comparisons of vibration response predictions
of thin beams and plates with analytical solutions. The last part concentrates on the performance of the
DSC–MS for discrete response analysis of thin plates by presentations of several numerical applications.

4.1. High-frequency concept

In vibro-acoustics, modal overlap count is an indicator of the threshold of high-frequency region. This
count is defined as [1]

MO ¼
Df n

df
¼

zf n

df
(30)

Here, fn is the natural frequency, Dfn is the modal bandwidth and df is the average modal spacing between
two adjacent modes in the frequency bandwidth. A schematic representation of these parameters is given in
Fig. 2. Rabbiolo et al. [1] have defined three different high-frequency thresholds based upon the approximate
modal overlap counts; MO ¼ 1 for beams, MO ¼ 2:5 for plates and MO ¼ 3 for acoustic enclosures.
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Fig. 2. Representation of modal parameters in a bandwidth.
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Modal overlap count is also defined by the centre frequency, fc and the modal density, n(f) of a considered
bandwidth as follows [36]:

MO ¼ zf cnðf Þ (31)

Modal density is the number of modes in a considered frequency bandwidth i.e., n(f) ¼ P/Df. For simple
structures, modal density can be analytically determined. For instance, modal density for plates is given as [37]

nðoÞ ¼
As

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0=rh

p (32)

where As is the surface area of the plate and it is noted that n(f) ¼ 2pn(o). Generally, if MO given in Eq. (31) is
higher than unity, the energy-based approaches such as SEA and EFEM can be reliably used in this region
[38]. Eqs. (30) and (31) indicate that the modal overlap count is determined only for damped systems with a
sufficiently wide frequency band. Therefore, for an undamped system solution the modal overlap count cannot
be used as an indicator of high-frequency range.

4.2. Convergence study of DSC approach

Although, a comprehensive convergence study for very higher modes was given by Wei et al. [31], a brief
demonstration for the accuracy of the DSC is also presented in this study by using three different number of
discretization point N associated with three different discretization parameter r. Here, the relative error is
defined as % error ¼ 100� (OA�OD)/OA, where OA and OD are non-dimensional frequency parameters
obtained by analytical and DSC solutions, respectively.

The discretization parameter r is defined as a ratio that depends on the regularization parameter s and the
discretization interval D, i.e., r ¼ s/D. In addition to the selection of high number of discretization points, a
reliable modal prediction also directly depends on the appropriate selection of discretization parameter.
However, adapting very low and very high r values may cause some numerical instability. A proper selection
can be made by trial and error method. Actually, Qian and Wei [39] have presented a mathematical estimation
for the relative selection of r, s and M in a reliable wide range. Brief statements for this estimation can also be
found in Refs. [18,20,22].

Figs. 3(a–c) show relative error for frequency parameters of simply supported beams whereas Figs. 4(a–i)
present errors for simply supported plates. In the given convergence tests, r values were selected as 4.1–8.1,
6.1–10.1 and 8.1–12.1 corresponding to N ¼ 1001, 2001 and 3001 respectively, for beams; and corresponding
to N ¼ 51� 51, N ¼ 61� 61 and N ¼ 71� 71 respectively, for plates.

As Figs. 3(a–c) are examined, it is clearly seen that increasing r decreases the relative errors for each of N

values and also increasing N decreases the error values of the considered modes. For N ¼ 3001 with r ¼ 12.1,
the first 2999 natural modes of beams can be obtained by maximum error of 0.018%. However, N ¼ 1001 grid
points corresponding the first 999 natural modes state the error under 0.07%, independent of r value.
Actually, this score is also reliable for high-frequency analysis. The same effect of r is also realized for plates as
Figs. 4(a–i) are examined. The first 4761 modes are accurately obtained for N ¼ 71� 71 with r ¼ 12.1; and
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approximately 1% error is observed for the first 4750. Selecting N ¼ 51� 51 for each r, predicts at least the
first 1000 modes with zero error. This amount of modes also indicates high-frequency region.

4.3. Verification of DSC– MS approach

4.3.1. Vibration displacement response of a thin beam

Analytical solution for the displacement response of a simply supported undamped beam subjected to a
point force F applied at the centre is [40]

wðx; tÞ ¼
2F

rAa

X1
n¼1

sinðnp=2Þ

o2
nð1� ðo=onÞ

2
Þ

sinðnpxÞ

a
sinðotÞ (33)

where

o2
n ¼

n4p4EI

rAa4
; n ¼ 1; 2; 3; . . . . (34)

Here a is the beam length, I is the moment of inertia and A is the area of the beam cross-section. In the
analysis, the beam was discretized by N ¼ 3001 grid points with r ¼ 12.1 providing P ¼ 2999 natural modes.
A harmonic point force in the form of F ¼ 100 sin(200 pt)N was applied. The physical properties of the beam
are: a ¼ 1m, r ¼ 2700 kg/m3, A ¼ 1� 10�4m2, E ¼ 7.1� 1010N/m2, I ¼ 8.33� 10�10m4 and the natural
frequency parameters are given as

On ¼ on

ffiffiffiffiffiffiffi
rA

EI

r
¼

np
a

� �2
; n ¼ 1; 2; 3; . . . . (35)
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Fig. 5 shows the perfect match between the vibration displacement response predictions of DSC–MS
approach and analytical expression given in Eq. (33) for the frequency f ¼ 100Hz.
4.3.2. Vibration displacement response of a thin plate

Analytical expression of the non-dimensional natural frequency parameter of a simply supported thin plate
is given as [41]

Om;n ¼ p2ðm2 þ n2Þ; m; n ¼ 1; 2; 3; . . . (36)

In the present analysis, the plate was discretized by N ¼ 71� 71 grid points and discretization parameter r

was chosen as 12.1. The plate with the side lengths of 1m� 1m has the following parameters: r ¼ 7900 kg/m3,
h ¼ 0.001m, E ¼ 2.1� 1011N/m2. Fig. 6 displays the relative error of the first 4761 modes (P ¼ 4761) of the
simply supported plate predicted by the DSC, corresponding up to almost 21 200Hz. The region including the
first 4750 modes can be thought as acceptable frequency range, since the maximum absolute error is
approximately 1% here. However, when comparing the predicted results with the analytical frequencies, it was
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noticed that after 3253th mode ( ¼ 10 355Hz), having 0.127% error, some predicted natural modes shift to the
position of the subsequent analytical modes. This phenomenon arising due to high-modal density causes the
loss of some modal information. This numerical illness may be recovered and the upper limit can be extended
to higher frequencies by accommodating better computational configurations. For definitely reliable solutions,
only up to the first 3253 modes were considered in all the present plate analyses. However, this much mode can
be regarded as rather sufficient for an acceptable high-frequency analysis.

Since there is no analytical solution for the vibration response of finite plates, the comparison study has
been performed by using the approximate analytical solution of infinite plates. The plate with 1m� 1m
dimensions is sufficiently large to approximately simulate an infinite plate. Displacement field of an infinite,
thin, transversely vibrating plate subjected to a harmonic point force F(t) applied at the centre is examined by
the wave propagation and the response is given with the far-field assumption (krb1) as [42]

wðrÞ �
jF

8D0ð1þ jzÞk2

ffiffiffiffiffiffiffiffi
2

pkr

r
ejðot�krþp=4Þ (37)

Here r is the distance between excitation point (xf, yf) and observation point (x, y), i.e.,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xf Þ

2
þ ðy� yf Þ

2
q

, k is the complex wavenumber and for z51 is given as

k ¼ k0 � jg=2 (38)

where k0 is the wavenumber in the absence of damping, g ¼ oz/cg is the damping coefficient and cg is the

group velocity (i.e., cg ¼ 2
ffiffiffiffi
o
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D0=rh4
p

). It is seen that in Eq. (37) the response leads to an asymptotic

behaviour near the excitation point and it yields an infinite value at the excitation point. However, a finite
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maximum value of w(r) can be obtained by determining an initial radius satisfying the condition of
|w(r0)| ¼ |w(0)| as follows:

r�10 �
pjkj
2
þ g (39)
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At that point, the response approximately leads to

jwðr0Þj �
jF

8D0ð1þ jzÞk2

����
���� (40)

In this part of the study, the central excitation has an amplitude of F ¼ 100N and its frequency varies
between 102 and 104Hz. The DSC–MS response at the centre of the plate is presented in Figs. 7(a–c) for three
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internal damping factors z ¼ 0, 0.01 and 0.1, respectively together with analytical solutions. It is observed in
Fig. 7 that DSC–MS results accurately follow the general tendency of the infinite plate response. Since Eq. (40)
does not include natural frequency information, the response of infinite plate exhibits a decreasing smooth line
with increasing excitation frequency. However, the DSC–MS predicts the response peaks corresponding to
natural modes of undamped system discretely as shown in Fig. 7(a). When damping is included, response
peaks rapidly disappear (Fig. 7(b)) and DSC–MS results become perfectly matching with the analytical
solutions for higher internal damping factors (Fig. 7(c)).
4.4. Numerical applications for discrete response analysis of thin plates

In all numerical applications, the same plate and DSC discretization parameters given in the verification
study were used. However, for the spatial and frequency response analyses, fully simply supported and fully
clamped boundary conditions were considered, respectively.
Fig. 10. Time-harmonic excitation force spectra: (a) ideal white noise (0–100Hz), (b) ideal white noise (0–7500Hz), (c) 1/3 octave band-

limited white noise (flow ¼ 891Hz, fcent ¼ 1000Hz, fhigh ¼ 1123Hz).
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4.4.1. Spatial response analysis

DSC–MS approach was used for spatially distributed displacement response of fully simply supported
undamped thin plate subjected to time-harmonic point forces with different frequency content and having an
amplitude of F ¼ 100N. Figs. 8(a–c) show the spatially distributed response of the plate to the single
harmonic central excitations at 100, 1000 and 5000Hz frequencies, respectively. Fig. 9 presents response
contours of the plate subjected to three point forces with several frequencies and frequency combinations.
These embroidered contours show the versatility of the DSC–MS on predicting spatially distributed response
field.

4.4.2. Frequency response analysis

The frequency response analysis of a fully clamped thin plate was performed by DSC–MS approach for the
time-harmonic excitation forces for which frequency spectra are given in Fig. 10. The analysis included low,
mid and high-frequency regions. The excitation forces were applied to the centre of the plate. Firstly, an
excitation in the form of ideal white noise throughout 0–100Hz as shown in Fig. 10(a) was applied. In this
analysis, P ¼ 25 modes ( ¼ 8.9357–113.79Hz) were sufficiently contributed to the response. Secondly, an
excitation again in the form of ideal white noise but in a much wider range, throughout 0–10 000Hz, was
considered (Fig. 10(b)). Finally, for high-frequency band analysis, a 1/3 octave band of the previous excitation
at the 1000Hz centre frequency was applied (Fig. 10(c)). In the last two cases, P ¼ 3253 modes
( ¼ 8.9357–10 561Hz) were taken into account.

Fig. 11 shows the frequency response of the undamped plate to the first excitation. The resonant
modes are clearly observed as disturbances for the excitation point response in Fig. 11(a). Since spatial
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averaging causes some weak modal information to be lost, the mean value spectrum in Fig. 11(b) includes only
stronger modes.

The response spectra of the undamped plate to the second excitation are given in Fig. 12. It is clearly
seen that the DSC–MS is capable of predicting vibration response for the entire frequency range
(0–10 000Hz). In contrast to the smooth response predicted by conventional high-frequency methods, the
present scheme yields discrete high-frequency response. The spectra at high frequencies can be better
visualized by focusing into 7500–10000Hz and 9900–10000Hz frequency ranges as displayed in Figs. 13
and 14, respectively.

The analysis in a limited frequency band shown in Fig. 10(c) for the last application is generally
performed by energy-based methods. These methods use the modal energy within a bandwidth to predict
an average response along the band. However, in order for these methods to be valid in a frequency
region, the considered band must include sufficient number of modes, i.e. the band must have high-modal
density. The DSC–MS results obtained for undamped (z ¼ 0) and slightly damped (z ¼ 0.01)
plates are presented in Fig. 15. The modal overlap count for plates can be derived by using Eqs. (31)
and (32):

MO ¼
As

2D
zf c (41)

For z ¼ 0.01 and fc ¼ 1000Hz, MO is calculated as 3.2047; that is greater than Rabbiolo’s plate
criterion MO ¼ 2:5. Therefore, the frequency band with the 1000Hz centre frequency may be regarded as
high-frequency band for the plate at hand. In Fig. 15, it is clearly seen that undamped high-frequency
behaviour predicted by the DSC–MS yields the discrete response peaks as much as accurately obtained in the
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low-frequency analysis. However, the damping decreases resonance peaks and therefore the response spectra
provide weak modal information. In practice, all systems have damping and for a realistic design, damping
behaviour must be adapted to the vibro-acoustic model. The modal content of any real high-frequency system
can be discretely obtained by the DSC–MS. The other advantage of the present scheme is that it does not
require any pre-condition for the modal density and damping.
5. Conclusion

Available high-frequency approaches are generally based on energy equilibrium between substructures or
structural elements. These methods consider average prediction of energy as system variable to describe the
response level. Therefore, they disregard modal information and thus, loose discrete response behaviour. This
lack of information may cause unrealistic results and leads to unreliable designs.

In the present study, a novel scheme ‘‘DSC–MS approach’’ was introduced for the prediction of
spatially distributed and discrete frequency response of structures subjected to time-harmonic point
forces. The comparisons with the analytical solutions of thin beams and plates showed that the present
approach can be reliably used for high-frequency vibration analysis. By this powerful approach, it became
possible to disregard the energetic parameters and to consider primary response variables for high
frequencies. The DSC–MS predicts the response spectra with a perfect resolution. The method can be reliably
used for the entire frequency ranges without any pre-conditioning of modal density and damping. DSC–MS
approach promises new horizons on recovering uncertainties at high frequencies by providing basic system
characteristics.
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Appendix A. Supporting Information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jsv.
2008.08.031.
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